NMR Spectroscopic Evidence for the Structure of Iminium Ion Pairs

Herbert Mayr, *,† Armin R. Ofial,† Ernst-Ulrich Würthwein, *,‡ and Nicola C. Aust $^{\ddagger,\$}$

Contribution from the Institut für Organische Chemie der Ludwig-Maximilians-Universität München, Karlstrasse 23, D-80333 München, Germany, and the Organisch-chemisches Institut der Westfälischen Wilhelms-Universität Münster, Corrensstrasse 40, D-48149 Münster, Germany

Received August 14, 1997[®]

Abstract: The NMR spectroscopic investigation of solutions of the iminium ions Me₂N⁺=C(H)Cl (1⁺), Me₂N⁺= C(H)Ph (**2a**⁺), and Et₂N⁺=CH₂ (**3**⁺) in aprotic solvents shows that the replacement of the weakly nucleophilic counterions SbCl₆⁻, AlCl₄⁻, BF₄⁻, or CF₃SO₃⁻ by halide ions (I⁻, Br⁻, Cl⁻) causes a deshielding of the proton at the iminium carbon atom ($\Delta \delta_{max} = +2.8$ for **2a**⁺ in CD₂Cl₂) while the chemical shifts of all other ¹H and ¹³C nuclei remain almost unaffected. The solvent dependence of these effects, ¹⁴N NMR investigations, and ab initio MO calculations suggest that iminium halides form CH····Y⁻ hydrogen bonds (Y = Cl, Br, and I) and thus exist as contact ion pairs in acetonitrile, chloroform, dichloromethane, and dimethyl sulfoxide solutions. In liquid sulfur dioxide, specific anion-cation interactions cannot be observed due to the superior solvation of the anions by SO₂.

Introduction

The importance of ion pairing in carbocation chemistry has been well recognized since Winstein's pioneering studies of solvolysis reactions¹ and has led to the dissociation scheme depicted in eq 1.

$$R-X \iff R^+ X^- \iff R^+ // X^- \iff R^+ + X^-$$
(eq. 1)
covalent contact solvent-separated free ions
ion pair

In contrast to the situation in the chemistry of carbanions,² in carbocation solutions, solvent-separated ion pairs and free ions usually cannot be distinguished by spectroscopic methods, and even the detection of contact ion pairs is difficult as long as the cation—anion interactions are only of electrostatic nature and not site-selective.^{2b,3} This situation changes significantly, however, when cation, anion, and/or solvent are able to interact with each other specifically.

It has long been recognized that counterions play a significant role in the chemistry of Vilsmeier ions (chloromethyleneammonium ions). At ambient temperature only one CH₃ signal is detected in the ¹H and in the ¹³C NMR spectra of the Vilsmeier salts **1**-Y [Y⁻ = Cl⁻, PO₂Cl₂⁻, N(POCl₂)₂⁻]⁴ although the two methyl groups do not occupy equivalent positions.

Equilibria of ionic and covalent species (eq 2) have been suggested to explain this observation,⁵ and the influence of

(3) Schneider, R.; Mayr, H.; Plesch, P. H. Ber. Bunsenges. Phys. Chem. 1987, 91, 1369-1374.

different counterions on the chemical shift of the C_{sp}^{2} -H was rationalized in the same way: The salt 1-Cl shows a resonance at δ 11.11 in CDCl₃,^{4a} whereas 1-PO₂Cl₂—generated by the reaction of dimethylformamide with POCl₃—gives a signal at δ 10.05 in CH₂Cl₂.^{4b} The corresponding imidophosphoryl tetrachloride [N(POCl₂)₂⁻] of 1⁺ finally resonates at δ 9.87 in CDCl₃.^{4c}

$$Me \xrightarrow{+1}_{CI} H \xrightarrow{+1}_{V} Me \xrightarrow{-1}_{CI} Me \xrightarrow{-1}_{V} H \xrightarrow{-1}_{CI} (eq. 2)$$

In addition, 1-Cl and the Vilsmeier reagent obtained from dimethylformamide and POCl₃ were observed to show different reactivities in formylations of thiophenes.⁶ It was not clear, however, whether this was due to the presence of the dichlorophosphate $1a^+$ (eq 3) or whether the electrophilicity of the (chloromethylene)dimethylammonium ion 1^+ was altered by the nature of the anion Y⁻ (PO₂Cl₂⁻ vs Cl⁻).^{6a,7}

The influence of solvents on the chemical shifts of the $^+N=CH_2$ protons of methyleneammonium salts has first been

^{*} Author to whom correspondence should be addressed.

[†]Ludwig-Maximilians-Universität München. Telefax: int. +89-5902254. E-mail: hmy@org.chemie.uni-muenchen.de.

[‡]Westfälische Wilhelms-Universität Münster. Telefax: int. +251-8333261. E-mail: wurthwe@uni-muenster.de.

[§] New address: Department of Chemistry, University of Houston, Houston, TX 77204-5641.

[®] Abstract published in Advance ACS Abstracts, December 1, 1997.

^{(1) (}a) Ions and Ion Pairs in Organic Reactions; Szwarc, M., Ed.; Wiley-Interscience: New York, 1972–1974; Vols. 1 and 2. (b) Szwarc, M.; Van Beylen, M. Ionic Polymerisation and Living Polymers; Chapman & Hall: New York, 1993.

^{(2) (}a) Mayr, H.; Schneider, R.; Schade, C. *Makromol. Chem., Macromol. Symp.* **1988**, *13/14*, 43–59. (b) Mayr, H. In *Cationic Polymerizations*; Matyjaszewski, K., Ed.; Marcel Dekker: New York, 1996; Chapter 2, pp 51–136.

^{(4) (}a) Cetinkaya, B.; Lappert, M. F.; McLaughlin, G. M.; Turner, K. J. Chem. Soc., Dalton Trans. **1974**, 1591–1599. (b) Martin, M. L.; Ricolleau, G.; Poignant, S.; Martin, G. J. J. Chem. Soc., Perkin Trans. 2 **1976**, 182–186. (c) Riesel, L.; Pfützner, A.; Herrmann, E. Z. Chem. **1983**, 23, 344–345.

^{(5) (}a) Rabiller, C.; Ricolleau, G.; Martin, M. L.; Martin, G. J. *Nouv. J. Chim.* **1980**, *4*, 35–42. (b) Martin, G. J.; Poignant, S. *J. Chem. Soc., Perkin Trans.* 2 **1974**, 642–646.

^{(6) (}a) Alunni, S.; Linda, P.; Marino, G.; Santini, S.; Savelli, G. J. Chem. Soc., Perkin Trans. 2 **1972**, 2070–2073. (b) Cipiciani, A.; Clementi, S.; Linda, P.; Marino, G.; Savelli, G. J. Chem. Soc., Perkin Trans. 2 **1977**, 1284–1287.

⁽⁷⁾ Kantlehner, W. In *Comprehensive Organic Synthesis*; Trost, B. M., Fleming, I., Eds.; Pergamon Press: Oxford, 1991; Vol. 6, Chapter 2.7, pp 485–599.

 Table 1.
 ¹H (300 MHz) and ¹³C (75.5 MHz) NMR Chemical Shifts of Vilsmeier Salts 1-Y in CD₃CN

	$\delta(^{1}\text{H})$		δ(¹³ C)		
salt	+N=CH(Cl)	NMe	+N=CH(Cl)	NMe	
1 -Cl 1 -OTf 1 -SbCl ₆ 1 -AlCl ₄	11.08 9.10 8.98 8.98	3.74 3.78/3.61 3.75/3.61 3.75/3.61	166.7 166.1 165.7 165.7	46.5 50.0/44.3 50.0/44.3 50.0/44.3	

reported by Volz and Kiltz.⁸ It was shown that the methylene resonances of the *N*-methyl-*N*-mesitylmethyleneammonium perchlorate albeit depending on the employed solvents did not correlate with their dielectric constants. As a consequence, it was stated that the observed variations of the chemical shifts were partially due to "specific orientations of solvents and solutes".⁸

Schroth et al.⁹ recently reported that the ⁺N=C*H*Ph proton of (*S*)-(*E*)-1-benzylidene-2-(methoxymethyl)pyrrolidinium chloride resonates at δ 10.32 in CDCl₃ while the corresponding triflate gives a signal at δ 9.08 under the same conditions. An interpretation for this observation was not presented.

Despite the fact that NMR spectroscopy proved to be the most powerful tool for the structural investigation of carbocations in solutions,¹⁰ a systematic study of the influence of the counterion on the NMR spectra of iminium salts has not yet been performed.¹¹ Since selective cation—anion interactions are relevant for our kinetic studies of the reactions of carbocations with nucleophiles, we set out to investigate these interactions experimentally and computationally.

In this paper we report on the first NMR spectroscopic evidence for ion pairing of iminium ions. A model for the structure of the ion pairs is presented, and the spectroscopic observations are compared with the results of ab initio MO calculations.

Results and Discussion

Proton and Carbon-13 NMR. Expecting equilibria between ionic and covalent species (eq 2), we were surprised to find the methine H of 1-Cl (δ 11.08, in CD₃CN) to be 2.1 ppm more deshielded than in 1-AlCl₄ (Table 1), since the percentage of covalent material should be larger in the Vilsmeier chloride 1-Cl. Moreover, the detection of two separated, nonbroadened methyl signals in the ¹H and ¹³C NMR spectra of 1-OTf, 1-AlCl₄, and 1-SbCl₆ indicated the absence of fast exchange reactions, and the almost constant ¹³C NMR chemical shifts of the cationic moiety also argued against the presence of variable concentrations of covalent material (Table 1).

Similar phenomena were observed in the NMR spectra of benzylideneammonium ions. As shown in Table 2, counterion effects in the NMR spectra of the *N*,*N*-dimethylbenzylideneammonium ions ($2a^+$) and *N*,*N*-dimethyl(*p*-methoxybenzylidene)ammonium ions ($2b^+$) are of comparable magnitude as those observed for Schroth's structurally analogous pyrrolidinium salts.⁹ With weakly basic counterions (OTf⁻, BF₄⁻, SbCl₆⁻, and AlCl₄⁻), the chemical shifts of the ⁺N=CHPh protons of $2a^+$ are found to be practically independent of the anion

Table 2. Selected ¹H (300 MHz) and ¹³C (75.5 MHz) NMR Chemical Shifts of *N*,*N*-Dimethylbenzylideneammonium Salts **2a**-Y and of *N*,*N*-Dimethyl(*p*-methoxybenzylidene)ammonium Salts **2b**-Y in CD₃CN

	$\delta(1)$	H)	δ(¹³ C)		
salt	⁺ N=CH(Ar) ^a	(E/Z)-NMe ^b	+N=CH(Ar)	NMe	
2a-Cl	10.25	3.93/3.72	173.9	51.3/44.4	
2a-Br	9.94	3.91/3.70	173.1	51.4/44.6	
2a-I	9.53	3.85/3.67	172.3	51.7/44.8	
2a-OTf	8.91	3.80/3.69	173.3	52.1/44.5	
$2a-BF_4$	8.87	3.80/3.70	173.3	52.2/44.4	
$2a-SbCl_6$	8.84	3.83/3.73	172.9	52.3/44.5	
2a-AlCl ₄	8.83	3.79/3.70	173.3	52.2/44.6	
2b-Cl	10.05	3.79/3.70	173.3	52.2/44.6	
2b-OTf	8.64	3.83/3.73	172.9	52.3/44.5	

^{*a*} Broad singlet. ^{*b*} Each NMe signal is split into a doublet by spin—spin coupling with the iminium proton ($J \le 1$ Hz). For results of NOE experiments see ref 12.

Table 3. ¹H (300 MHz) and ¹³C (75.5 MHz) NMR Chemical Shifts of the $^+N=CH_2$ Fragment in Dialkylmethyleneammonium Salts $R_2N^+=CH_2Y^-$ in CD₃CN

R	salt	δ (¹ H)	δ (¹³ C)	$J_{\rm N,C}~({\rm Hz})^a$
Et	3 -Cl	8.40	164.1	11.8
Et	3-Br	8.25	162.8	b
Et	3-I	8.10	161.2	b
Et	3-OTf	7.95	166.5	12.5
Et	3-SbCl ₆	7.88	166.1	12.8
Me	4-OTf	7.86	169.7	13.2
Me	4-SbCl ₆	7.80	169.5	13.2
Me	4-AlCl ₄	7.80	169.3	12.9
Pr	5-SbCl ₆	7.87	167.8	12.5
iPr	6-SbCl ₆	8.05	163.5	12.3
Bu	7-SbCl ₆	7.87	167.6	12.5
<i>i</i> Bu	$8-SbCl_6$	7.87	169.0	12.1

^{*a*} Coupling constant refers to the nitrogen-14 nucleus, see also ref 19. ^{*b*} Broad, unresolved signals in the proton decoupled carbon-13 spectra.

 $(\Delta \delta \le 0.08 \text{ ppm})$. When compared to the AlCl₄⁻ compound, this proton becomes more and more deshielded when I⁻ $(\Delta \delta = 0.70 \text{ ppm})$, Br⁻ $(\Delta \delta = 1.11 \text{ ppm})$, or Cl⁻ $(\Delta \delta = 1.42 \text{ ppm})$ are used as counterions (Table 2). A similar but much weaker trend can be observed for the low-field NMe resonance $(\Delta \delta_{\text{max}} = 0.14 \text{ ppm})$, which is tentatively assigned to the (*E*)-NMe group,¹² whereas the carbon chemical shifts show only little changes and cannot be interpreted straightforwardly.

Compared to the cations 1^+ , $2a^+$, and $2b^+$, the $+N=CH_2$ protons of the diethylmethyleneammonium ion 3^+ experience a much weaker deshielding in the presence of halide ions (Table 3). The same NMR spectra as detected for the iminium halides 3-Cl and 3-Br have been obtained when the corresponding tetrabutylammonium halides were added consecutively to solutions of the iminium hexachloroantimonate $3-SbCl_6$ (Figure 1).

⁽⁸⁾ Volz, H.; Kiltz, H.-H. Liebigs Ann. Chem. 1971, 752, 86-101.

⁽⁹⁾ Schroth, W.; Jahn, U.; Ströhl, D. Chem. Ber. 1994, 127, 2013–2022.

⁽¹⁰⁾ For NMR investigations of carbocations in solution, see: (a) Olah, G. A.; Prakash, G. K. S.; Sommer, J. *Superacids*; Wiley & Sons: New York, 1985. (b) Olah, G. A. *Angew. Chem.* **1995**, *107*, 1519–1532; *Angew. Chem., Int. Ed. Engl.* **1995**, *34*, 1393–1405.

⁽¹¹⁾ For a compilation of NMR data of iminium salts, see: Merényi, R. In *Iminium Salts in Organic Chemistry, Part 1 [Adv. Org. Chem., Vol. 9 (1)]*; Böhme, H., Viehe, H. G., Eds.; Interscience: New York, 1976; pp 23–105.

⁽¹²⁾ On the basis of earlier NOE experiments with *N*,*N*-dimethyl(*p*-methylbenzylidene)ammonium tetrafluoroborate reported in ref 44 and our own NOE experiments with **2b**-OTf and **2b**-Cl, it can also be deduced for salts of $2a^+$ that the NMe group which resonates at lower field occupies the (*E*)-position of the CN double bond.

Figure 1. Chemical shift dependence (in CD₃CN) of the $^+N=CH_2$ protons on the mole fraction $x(Bu_4N^+Y^-)$ of $3-SbCl_6/Bu_4N^+Y^-$ mixtures. In the plot the δ value at x = 0 refers to a solution of pure $3-SbCl_6$ while the δ values at x = 1 were taken from the 1H NMR spectra of solutions of pure 3-Cl and 3-Br, respectively.

Scheme 1

with X = CI, Ph, An

On the other hand, the addition of 8 equiv of $Bu_4N^+Cl^-$ to a solution of **3**-Cl did not further affect the chemical shifts of the =CH₂ group. We conclude, therefore, that the spectral data given for **3**-Cl in Table 3 refer to completely paired iminium ions.

Since ammonium functionalities are known to enhance the hydrogen bond donor abilities of adjacent C_{sp^3} -H¹³ and C_{sp^2} -H bonds,¹⁴ we assumed that the iminium halides exist as contact ion pairs with structures as shown in Scheme 1. The formation of C–H···Y⁻ hydrogen bonds explains that the deshielding of the ⁺N=CH(X) protons reaches a maximum in the presence of the most basic counterion of this series, i.e. Y⁻ = Cl⁻.

Consistent with our model, the diminished influence of the counterion on the NMR spectra of dialkyliminium ions $R_2N^+=CH_2$ can be rationalized by the rapid equilibration shown in eq 4. Due to this degenerate equilibration the observed $\Delta\delta$ for the *two* =CH₂ protons reflects only half of the actual deshielding, which is experienced by the proton that participates in the hydrogen bonding. Equation 4 furthermore explains the observed time-averaged C_{2v} symmetry in the NMR spectra of the symmetrically N-substituted methyleneammonium salts (Table 3).

$$R H R H (eq. 4)$$

$$R H R H (eq. 4)$$

Solvent Dependence. The methine resonance of the iminium ion $2a^+$ remained constant in different aprotic solvents, e.g. in CD₃CN, CDCl₃ or CD₂Cl₂ as long as complex counterions (Y⁻ = AlCl₄⁻, SbCl₆⁻, BF₄⁻) were employed (Table 4). The corresponding resonance of the iminium *halides*, however, showed

Table 4. Dependence of the $Me_2N^+=CHPh$ (2a⁺) Proton Resonance on the Solvent

	$\delta(^1\mathrm{H})^a$					
salt	in CD ₂ Cl ₂	in CDCl ₃	in CD ₃ CN	in SO_2^b	in DMSO	
2a-Cl	10.65	10.50 ^c	10.25	8.92	10.02	
2a-Br	10.37	10.27	9.94		9.64	
2a-I	10.03	9.98	9.53		9.47	
2a-OTf	9.10	9.11^{d}	8.91		9.37	
$2a-BF_4$	8.90^{e}		8.87			
2a-SbCl ₆	f	f	8.84		9.34	
2a-AlCl ₄	8.85	f	8.83	8.84	f	

^{*a*} ¹H NMR spectra (300 MHz) recorded in CD₂Cl₂, CDCl₃, DMSOd₆, and SO₂ refer to tetramethylsilane (δ 0.00), spectra in CD₃CN were referenced to the solvent signal (δ 1.93). ^{*b*} At -10 °C. ^{*c*} An identical chemical shift has been reported in ref 42. ^{*d*} Value taken from ref 9. ^{*e*} A value of δ 9.01 has been reported for **2a**-BF₄ (in CD₂Cl₂) in ref 44. ^{*f*} No data could be acquired due to the insolubility of the salts in the solvents.

a strong dependence on the solvent, indicating the different ability of CD₃CN, CDCl₃, and CD₂Cl₂ to solvate the anionic moiety: weak solvent—anion interactions cause stronger cation—anion interactions which finally give rise to a higher deshielding of the $^+N=CHPh$ proton.

In CD₃CN, the ¹H NMR resonance of ⁺N=CHPh (**2a**⁺) is deshielded by only 0.08 ppm when AlCl₄⁻ is replaced by the OTf⁻ counterion. When the spectra were recorded in CD₂Cl₂, however, this difference increased to 0.25 ppm. The downfield shift of the OTf⁻ salt indicates that—due to ion pairing—weak hydrogen bonds between the imino proton and the oxygen atoms of the counterion can be formed in the relatively nonpolar solvent CD₂Cl₂.

Since sulfur dioxide is known to be an electron pair acceptor¹⁵ that can be employed as a Lewis acidic solvent,¹⁶ a strong solvation of Cl⁻ by SO₂ was expected. It was not surprising therefore that solutions of **2a**-Cl ($\delta^+_{N=CHPh}$ 8.92, Table 4) and **2a**-AlCl₄ ($\delta^+_{N=CHPh}$ 8.84) in liquid sulfur dioxide exhibit almost identical ¹H NMR spectra: The chemical shifts correspond to those of free ions.

A different behavior was observed for solutions of the iminium salts **2a**-Y in DMSO- d_6 . Although the increasing deshielding with growing basicity of the anion was retained qualitatively within the series of the iminium halides, the salts with complex counterions resonated at lower field than in the solvents so far discussed ($\Delta \delta$ +0.5 compared to CD₃CN, Table 4). This phenomenon can be explained by the known hydrogen bond acceptor ability of dimethyl sulfoxide,¹⁷ which probably competes with the anions for the hydrogen-bonding sites of the cations.

Nitrogen-14 NMR. Usually spin-spin coupling to ¹⁴N (I = 1, 99.6% natural abundance) is not observed due to the rapid quadrupolar interaction which is the predominant relaxation mechanism. Only in a few cases when the high symmetry of the molecule and the partial (or complete) disappearance of the nitrogen lone pair decreases the electric field gradient at the nitrogen site are spin-spin couplings with nuclei like ¹H or ¹³C as well as narrow ¹⁴N NMR linewidths observable.¹⁸

⁽¹³⁾ Reetz, M. T.; Hütte, S.; Goddard, R. J. Am. Chem. Soc. 1993, 115, 9339–9340.

⁽¹⁴⁾ Regitz, M. Angew. Chem. **1996**, 108, 791–794; Angew. Chem., Int. Ed. Engl. **1996**, 35, 725–728.

^{(15) (}a) Tokura, N. Synthesis 1971, 639-645. (b) Clennan, E. L.;
Stensaas, K. L. J. Org. Chem. 1996, 61, 7911-7917. (c) Merrill, G. N.;
Dahlke, G. D.; Kass, S. R. J. Am. Chem. Soc. 1996, 118, 4462-4468. (d)
Pinick, H. W.; Reynolds, M. A. J. Org. Chem. 1979, 44, 160-161. (e)
Masilamani, D.; Rogic, M. M. J. Am. Chem. Soc. 1978, 100, 4634-4635.
(f) Truce, W. E.; Murphy, A. M. Chem. Rev. 1951, 48, 69-124.
(16) Mayr, H.; Gorath, G.; Bauer, B. Angew. Chem. 1994, 106, 793-

 ⁽¹⁶⁾ Mayr, H.; Gorath, G.; Bauer, B. Angew. Chem. 1994, 106, 793–794; Angew. Chem., Int. Ed. Engl. 1994, 33, 788–789.

⁽¹⁷⁾ For scales of solvent hydrogen bond acceptor basicities (called β), see: Kamlet, M. J.; Abboud, J.-L.; Abraham, M. H.; Taft, R. W. J. Org. Chem. **1983**, 48, 2877–2887. The values of β for CH₂Cl₂, CHCl₃, CH₃CN, and dimethyl sulfoxide are 0.00, 0.00, 0.31, and 0.76, respectively.

Figure 2. Influence of the counterion on the proton resonance of the methyl group in salts of 3^+ (300 MHz, in CD₃CN).

In the ¹H NMR spectrum of the *N*,*N*-diethylmethyleneammonium chloride **3**-Cl, the methyl groups resonate as a broad triplet (Figure 2). Exchange of the counterion by addition of trimethylsilyl triflate (TMSOTf) causes a further splitting due to the coupling with the ¹⁴N nucleus (${}^{3}J_{\rm N,H} = 2.1 \text{ Hz}^{19}$). A well-resolved spectrum with ¹H,¹⁴N coupling ${}^{3}J_{\rm N,H} = 2.2 \text{ Hz}^{19}$ was also observed for the corresponding hexachloroantimonate **3**-SbCl₆. This is in accord with earlier reports that ${}^{2}J_{\rm N,H}$ became observable in the ¹H NMR spectra of *N*,*N*-dimethylmethyleneammonium salts (**4**-**Y**) as the nucleophilicity of the counterion decreased.²⁰

Since the ¹⁴N linewidth is a sensitive probe of the geometry at the nitrogen site, small values are indicators for a highly symmetrical surrounding of the nitrogen nucleus. In solution, the interactions of the iminium cations 3^+-8^+ with complex counterions seem indeed to be negligible as indicated by the narrow linewidths ($\Delta v_{1/2} < 7$ Hz) of the ¹⁴N resonances and the independence of the ¹⁴N NMR chemical shifts of the nature of the anions SbCl₆⁻, AlCl₄⁻, and OTf⁻. The substituent effects on the ¹⁴N chemical shift of *N*,*N*-dialkylmethyleneammonium ions follow a trend similar to that in the corresponding dialkylammonium ions²¹ (Figure 3).

Correlation of Chemical Shifts with Thermodynamic Data. The ability of ions to participate in hydrogen bonds should be associated with the single ion free energy for the transfer of an ion from water to acetonitrile ΔG_t° (water \rightarrow acetonitrile).²² While ΔG_t° increases with decreasing size of the halide ions,²² values for the complex anions which were

Figure 3. Influence of the *N*-alkyl substituents on the chemical shifts of nitrogen nuclei in dialkylammonium ions²¹ and dialkylmethylene-ammonium ions (for ¹⁴N NMR chemical shifts of iminium salts, see the Supporting Information).

Figure 4. Plot of $\delta({}^{1}\text{H})$ of **2a**-Y and **3**-Y in CD₃CN vs ΔG_{t}° (kcal mol⁻¹) for the transfer of the anions Y⁻ from water to acetonitrile.

employed in this work have not yet been measured. Since ΔG_t° for ClO₄⁻ has been determined to be 0.5 kcal mol⁻¹,²² we assumed that the corresponding values of MX_n⁻ = AlCl₄⁻, SbCl₆⁻, and BF₄⁻ are also close to zero. Hence, the correlations of the observed chemical shifts of the iminium ions **2a**⁺ and **3**⁺ in acetonitrile-*d*₃ with ΔG_t° of their counterions (Figure 4) are in accord with the postulated interaction between halides and iminium ions via hydrogen bonds.

Quantum Chemical Calculations. Inspired by the NMR spectroscopic observation of iminium–halide interactions, we performed quantum chemical calculations²³ on the simplest *N*,*N*-dialkyliminium chloride, i.e. dimethylmethyleneammonium chloride (C₃H₈ClN) and its isomers and located three stationary points on the potential energy surface (Table 5, Figure 5). The global minimum **4a** ($E_{rel} = 0.0$ kcal mol⁻¹; MP2/6-31+G*) corresponds to the covalently bound (chloromethyl)dimethyl-

⁽¹⁸⁾ Monographs on nitrogen NMR spectroscopy: (a) Nitrogen NMR; Witanowski, M., Webb, G. A., Eds.; Plenum Press: London, 1973. (b) Witanowski, M.; Stefaniak, L.; Webb, G. A. Annu. Rep. NMR Spectrosc. **1993**, 25, 2–468. (c) Berger, S.; Braun, S.; Kalinowski, H.-O. ¹⁵N-NMR-Spektroskopie. In NMR-Spektroskopie von Nichtmetallen; Thieme Verlag: Stuttgart, 1992; Vol. 2. (d) Martin, G. J.; Martin, M. L.; Gouesnard, J. P. ¹⁵N-NMR-Spectroscopy. In NMR, Basic Principles and Progress; Diehl, P., Fluck, E., Eds.; Springer Verlag: Berlin, 1981; Vol. 18.

⁽¹⁹⁾ The values of the coupling constants $J({}^{14}N,X)$ can be converted to the more frequently used values of $J({}^{15}N,X)$ by the relation: $J({}^{15}N,X) = -1.403J({}^{14}N,X)$. See ref 18a.

⁽²⁰⁾ Knoll, F.; Krumm, U. Chem. Ber. 1971, 104, 31-39.

⁽²¹⁾ Duthaler, R. O.; Roberts, J. D. J. Am. Chem. Soc. 1978, 100, 3889-3895.

^{(22) (}a) Pienta, N. J.; Kessler, R. J. J. Am. Chem. Soc. **1993**, 115, 8330–8339. (b) Marcus, Y. Pure Appl. Chem. **1983**, 55, 977–1021; **1985**, 57, 1103–1128.

⁽²³⁾ Gaussian 94, Revision B.2. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head-Gordon, M.; Gonzalez, C.; Pople, J. A.; Gaussian Inc., Pittsburgh, PA, 1995.

Table 5. Ab Initio Total Energies (*E*), Relative Energies (E_{rel}), Dipole Moments, and Zero-Point Energies (ZPE) for the C₃H₈ClN Species **4a**-c

	4 a	4 b	4c
symmetry	C_s	C_s	C_{2v}
RHF/6-31G*//6-31G*			
E/au^a	-632.17974	-632.14574	-632.13470
$E_{\rm rel}/\rm kcal\ mol^{-1}$	0.00	21.33	28.26
dipole moment/D	2.544	14.057	16.168
NIMAG ^b	0	0	1
ZPE/kcal mol ⁻¹	75.87	75.09	74.96
MP2/6-31G*//6-31G*			
E/au^a	-632.86693	-632.81874	-632.80234
$E_{\rm rel}/{\rm kcal}~{\rm mol}^{-1}$	0.00	30.24	40.53
RHF/6-31+G*//6-31+G*			
E/au^a	-632.18361	-632.15283	-632.14335
$E_{\rm rel}/{\rm kcal}~{\rm mol}^{-1}$	0.00	19.31	25.26
dipole moment/D	2.556	14.433	16.487
NÎMAG ^b	0	0	2
ZPE/kcal mol ⁻¹	75.74	75.05	74.89
MP2/6-31+G*//6-31+G*			
E/au^a	-632.87977	-632.83365	-632.81906
$E_{\rm rel}/{\rm kcal}~{\rm mol}^{-1}$	0.00	28.94	38.09

^{*a*} 1 au = 627.49 kcal mol⁻¹. ^{*b*} Number of imaginary frequencies (NIMAG): 0 = minimum, 1 = first-order transition state, 2 = second-order transition state or the potential energy surface.

Figure 5. Molecular structures of the cation 4^+ , of the covalent compound 4a, and of the ion pairs 4b and 4c (calculational numbering; $6-31+G^*//6-31+G^*$; see also Table 5).

amine which is characterized by a long C-Cl bond (1.868 Å) and a relatively small dipole moment (2.56 Debye).

The second minimum **4b** ($E_{rel} = 28.9 \text{ kcal mol}^{-1}$; MP2/ 6-31+G*) possesses C_s symmetry and corresponds to an ion pair with the chloride ion in the plane of the iminium cation. It shows a large dipole moment (14.4 Debye) and reveals hydrogen bonds from H5 (H5···Cl13 = 2.159 Å, C1···Cl13 = 3.216 Å, numbering in Figure 5) and, to a lesser extent, from H7 (H7···Cl13 = 2.542 Å, C3···Cl13 = 3.529 Å) to chloride.

A third stationary point **4c** ($E_{rel} = 38.1 \text{ kcal mol}^{-1}$; MP2/ 6-31+G*) corresponds to a second-order transition state ($C_{2\nu}$ symmetry) where the chloride is in close contact to both methylene hydrogens H5/H6. When the symmetry constraints are released, chloride moves along the mirror plane perpendicular to the iminium moiety with preservation of the C_s symmetry, and **4c** collapses into the global minimum **4a** without energy barrier.

Comparison of the MP2/6-31+G* energies in Table 5 with the sum of the total energies of the iminium ion 4^+ and the chloride ion ($E_{rel} = 124.3$ kcal mol⁻¹; MP2/6-31+G*)²⁴ shows

Table 6. Ab Initio Total Energies (*E*), Relative Energies (E_{rel}), Dipole Moments, and Zero-Point Energies (ZPE) for the Species **4a**-**c** with Two Molecules of Acetonitrile

	4a·2CH ₃ CN	4b·2CH ₃ CN	4c•2CH ₃ CN
symmetry	C_s	$\sim C_s$	C_{2v}
RHF/3-21G//3-21G			
E/au^a	-891.46116	-891.45439	-891.44418
$E_{\rm rel}/\rm kcal\ mol^{-1}$	0.00	4.25	10.66
dipole moment/D	2.107	6.248	8.098
NIMAG ^b	0	0	3
ZPE/kcal mol ⁻¹	139.45	139.34	138.56
RHF/6-31G*//6-31G*			
E/au^a	-896.04555	-896.03998	-896.03308
$E_{\rm rel}/\rm kcal\ mol^{-1}$	0.00	3.50	7.82
dipole moment/D	1.730	6.014	7.742
NIMAG ^b	0	0	3
ZPE/kcal mol ⁻¹	138.39	138.36	137.88
MP2/6-31G*//6-31G*			
E/au^a	-897.54048	-897.53049	-897.52032
$E_{\rm rel}/{\rm kcal}~{\rm mol}^{-1}$	0.00	6.27	12.65

^{*a*} 1 au = 627.49 kcal mol⁻¹. ^{*b*} Number of imaginary frequencies (NIMAG): 0 = minimum, 3 = third-order transition state on the potential energy surface.

Figure 6. Molecular structures of the acetonitrile solvated isomers 4a·2CH₃CN and 4b·2CH₃CN (calculational numbering; 6-31G*// 6-31G*; see also Table 6).

that three-quarters of the energy required to separate **4a** into the free ions in the gas phase are used to overcome the Coulomb attraction between the cation and the anion. Less than onequarter of the heterolytic bond dissociation energy of **4a** is needed for the rearrangement $4a \rightarrow 4b$.

These calculations refer to the gas phase and give only a rather crude picture of the behavior in solution. Therefore, we added two molecules of acetonitrile to the three isomeric structures $4\mathbf{a}-\mathbf{c}$, expecting a better approximation of the condensed state from this "super molecule approach".²⁵ The global minimum (C_s) now corresponds to $4\mathbf{a}\cdot\mathbf{2CH_3CN}$ ($E_{rel} = 0.00$ kcal mol⁻¹; MP2/6-31G*, Table 6, Figure 6), which is in fact an ionized species $4\mathbf{a}$ plus solvent molecules (C1…Cl13 = 2.529 Å). When the C1…Cl13 distance is shortened, the relative energy increases without reaching a stationary point.

A second minimum structure $4b \cdot 2CH_3CN$ with a relative energy of 6.3 kcal mol⁻¹ (MP2/6-31G*) is derived from the ion pair **4b**. A barrier of 8.3 kcal mol⁻¹ is estimated for the

⁽²⁴⁾ Ab initio total energies of the iminium ion 4^+ (-173.010 59 au) and of the chloride ion Cl⁻ (-459.671 15 au) were calculated on MP2/6-31+G* level (1 au = 627.49 kcal mol⁻¹).

⁽²⁵⁾ The use of H_2O or HCN as model solvents for the calculations was not successful since these protic solvents lead to strong hydrogen bonding to the chloride and weaken its basicity.

Table 7. Calculated ¹³C and ¹H NMR Chemical Shifts for the N,N-Dimethylmethyleneammonium Ion **4**⁺, the Contact Ion Pair **4b**, and the Covalent Compound **4a** (Atom Numbering, See Figure 5)

	$\delta(4^+)$		$\delta(\mathbf{4b})$		δ (4a)	
method ^a	А	В	А	В	А	В
symmetry	C_{2v}	C_{2v}	C_s	C_s	C_s	C_s
C1	169.04	181.76	183.13	192.62	70.79	85.88
C3	45.11	48.25	40.84	42.81	36.24	38.63
C4	45.11	48.25	43.78	46.67	36.24	38.63
H5	8.19	8.22	12.65	16.34	4.64	5.18
H6	8.19	8.22	7.93	8.19	4.64	5.18
H7	3.89	3.81	6.74	8.25	2.18	2.19
H8	3.86	3.88	2.81	2.67	2.18	2.23
H9	3.89	3.81	2.81	2.67	2.43	2.55
H10	3.89	3.81	3.21	3.22	2.18	2.19
H11	3.86	3.88	3.33	3.26	2.43	2.55
H12	3.89	3.81	3.33	3.26	2.18	2.23

^{*a*} Method A: RHF/6-31+G*//6-31+G*. Method B: RHF/6-311+G(2d,p)//B3LYP/6-31G*.

interconversion of the two solvated structures $4a \cdot 2CH_3CN$ and $4b \cdot 2CH_3CN$. Thus, even the very simple solvent model with two molecules of acetonitrile indicates the possibility of an equilibrium of both species which can be expected to be shifted even further to the ion pair structure 4b when additional solvent molecules are present.

Solvation of the transition state **4c** does not give rise to a minimum structure but to a transition state of third order (NIMAG = 3, $E_{rel} = 12.7$ kcal mol⁻¹; MP2/6-31G*) that relaxes to structure **4a**·**2**CH₃CN when the symmetry constraints are released.

Because of the ionic nature of both $4a \cdot 2CH_3CN$ and $4b \cdot 2CH_3CN$ calculated for the gas phase, it is not surprising that dialkyliminium chlorides are ionic in the condensed phase and that the crystal structure of *N*,*N*-dimethylmethyleneammonium chloride closely resembles structure **4b** (or **4b** \cdot 2CH_3CN) with the chloride ion in the (N-C-H) plane.²⁶

In order to interpret the observed NMR chemical shifts, we have performed quantum chemical calculations for the free iminium ion 4^+ , the contact ion pair 4b, and the covalent chloromethylamine 4a using the GIAO method²⁷ on two levels of theory. It is obvious that the change from the iminium ion 4^+ to the covalent molecule 4a is associated with a significant shielding of ¹³C and ¹H of the ⁺N=CH₂ group²⁸ (C1 and H5/ H6, respectively, Table 7). Such a trend was not observed experimentally when changing from iminium salts with weakly nucleophilic counterions, e.g. 3-SbCl₆, to 3-Cl (Table 3). The GIAO calculations furthermore show-in accord with our experimental observations-that the change from the free ion 4^+ to the ion pair 4b results in the deshielding of the proton H5 which is involved in the hydrogen bond to Cl⁻. However, the magnitude of this shift is predicted differently by the two employed methods of theory (Table 7).

Conclusions

Extensive work on the kinetics of the reactions of carbocations with nucleophiles has shown that the second-order rate constants were independent of the nature of the complex counterions.^{2,29} This phenomenon was explained by the fact that the cation—

anion interactions were exclusively electrostatic, and because they were of comparable magnitude in the ground and the transition state, variations of the counterions did not affect the rates.^{2,29} Due to the low stabilization of the carbocations used for those investigations, only complex anions have been employed; in the presence of free halide ions coordination with the carbocations to give covalent products would have taken place.

The situation is different for iminium salts. As discussed above, the stabilization of the positive charge by the nitrogen lone pair is so strong that ordinary iminium chlorides, bromides, and iodides are ionic in many solvents, and it has been reported that iminium ions with different counterions give different products in reactions with alkynes and allylsilanes.³⁰ This study has shown that specific cation—anion interactions in iminium halides (C—H···Hal⁻ hydrogen bonds) may be responsible for these observations.

Since the pioneering work of Allerhand and Schleyer,³¹ the hydrogen bond donor abilities of CH groups have intensively been studied. 1,3-Dialkylimidazolium ions^{32–34} are the only carbocation analogues which have previously been observed to behave as CH hydrogen bond donors. In the neat melts of these salts, the proton NMR chemical shifts of the cationic moieties are strongly affected by the nature of the counterions, which has been assigned to the formation of C–H···Y[–] hydrogen bonds. Although the exact structure of the contact ion pairs in ionic liquids has been subject of controversal discussion for more than one decade,³² the X-ray analysis of 1-ethyl-3-methylimidazolium iodide³⁵ and NMR studies of solutions of further 1,3-dialkylimidazolium salts in aprotic solvents^{32,36} indicate that the strongest C–H···Y[–] hydrogen bonds are formed to ring carbon 2.

Analogously, hydrogen-bonding abilities of the triflate ion have been reported for the positively charged tungsten vinyl ether complex $[Cp(CO)_3W(\eta^2-EtOCH=CHCH_3)]^{+.37}$ The results of the X-ray structure analysis revealed evidence for a network of C-H···O hydrogen bonds³⁸ between the cationic tungsten complex and the OTf⁻ counterion, and a downfield shift of the Cp (0.13 ppm) and the vinyl protons (0.5 ppm for EtOCH) in the presence of OTf⁻ compared to BAr₄⁻ [Ar = 3,5-bis(trifluormethyl)phenyl] was observable in the NMR spectra of CD₂Cl₂ solutions. As a parallel to our results (Table 4), these chemical shift differences disappeared (<0.03 ppm) in CD₃CN solution.

As expected from these literature reports, hydrogen bonding also plays an important role in iminium halides, and it has been

⁽²⁶⁾ Burg, A. B. Inorg. Chem. 1989, 28, 1295-1300.

^{(27) (}a) McWeeny, R. Phys. Rev. 1962, 126, 1028–1034. (b) Ditchfield,
R. Mol. Phys. 1974, 27, 789–807. (c) Cheeseman, J. R.; Trucks, G. W.;
Keith, T. A.; Frisch, M. J. J. Chem. Phys. 1996, 104, 5497–5509.

⁽²⁸⁾ For ¹³C NMR chemical shifts of **4**-Cl in a CD₂Cl₂/SO₂ mixture, see: Cooper, M. S.; Earle, M. J.; Fairhurst, R. A.; Heaney, H.; Papageorgiou, G.; Wilkins, R. F. *Synlett* **1990**, 617–618. In this mixture of solvents covalent and ionic species exist in equilibrium: δ_c (ionized **4**-Cl) 168.1, 49.4, δ_c (covalent **4**-Cl) 79.0, 38.7.

^{(29) (}a) Mayr, H.; Schneider, R.; Schade, C.; Bartl, J.; Bederke, R. J. Am. Chem. Soc. **1990**, 112, 4446–4454. (b) Mayr, H. Angew. Chem. **1990**, 102, 1415–1428; Angew. Chem., Int. Ed. Engl. **1990**, 29, 1371–1384.

^{(30) (}a) Ofial, A. R.; Mayr, H. J. Org. Chem. **1996**, 61, 5823-5830. (b) Ofial, A. R.; Mayr, H. Angew. Chem. **1997**, 109, 145-147; Angew. Chem., Int. Ed. Engl. **1997**, 36, 143-145.

⁽³¹⁾ Allerhand, A.; Schleyer, P. v. R. J. Am. Chem. Soc. 1963, 85, 1715–1723.

⁽³²⁾ Avent, A. G.; Chaloner, P. A.; Day, M. P.; Seddon, K. R.; Welton, T. J. Chem. Soc., Dalton Trans. **1994**, 3405–3413.

^{(33) (}a) Wilkes, J. S.; Hussey, C. L.; Sanders, J. R. *Polyhedron* **1986**, *5*, 1567–1571. (b) Fannin, A. A.; King, A. L.; Levisky, J. A.; Wilkes, J. S. J. Phys. Chem. **1984**, 88, 2609–2614.

⁽³⁴⁾ For a related study on AlCl₃/*n*-butylpyridinium chloride melts, see: Taulelle, F.; Popov, A. I. *Polyhedron* **1983**, *2*, 889–894.

⁽³⁵⁾ Abdul-Sada, A. K.; Greenway, A. M.; Hitchcock, P. B.; Mohammed, T. J.; Seddon, K. R.; Zora, J. A. J. Chem. Soc., Chem. Commun. 1986, 1753–1754.

⁽³⁶⁾ Lapshin, S. A.; Kapkan, L. M.; Chervinskii, A. Y.; Fedorov, V. V.; Lange, R. J. Org. Chem. USSR (Engl. Transl.) **1985**, 21, 1263–1269; Zh. Org. Khim. **1985**, 21, 1389–1395.

⁽³⁷⁾ Song, J.-S.; Szalda, D. J.; Bullock, R. M. J. Am. Chem. Soc. 1996, 118, 11134–11141.

⁽³⁸⁾ For a review concerned with C-H···O hydrogen bonding, see: Desiraju, G. R. Acc. Chem. Res. **1996**, 29, 441-449.

between ionic and covalent moleties are responsible for the anion dependence of the NMR chemical shifts of iminium ions. It remains to be clarified whether there is a systematic relationship between the strengths of the hydrogen bonds and the reactivities of iminium ions.

Experimental Section

NMR Experiments. The storage of the iminium salts and of the deuterated solvents as well as the sample preparation for the NMR measurements were carried out in a glovebox under argon atmosphere. The deuterated solvents were used as purchased, and sulfur dioxide gas was dried with P2O5 before its condensation. NMR data were collected with Bruker WM 300 or ARX 300 spectrometers. ¹H NMR spectra (300 MHz) of solutions in CD₂Cl₂, CDCl₃, dimethyl sulfoxide d_6 (DMSO), and sulfur dioxide were calibrated to tetramethylsilane $(\delta_{\rm H} 0.00)$ whereas solutions in acetonitrile- d_3 refer to the solvent signal $(\delta_{\rm H} 1.93)$. ¹³C NMR spectra (75.5 MHz) refer to acetonitrile- d_3 ($\delta_{\rm C}$ 1.30). DEPT-135 experiments were used to get information about the multiplicity of 13C resonances. Proton-decoupled 14N NMR spectra of iminium salts (0.5 M in acetonitrile- d_3) were recorded on the Bruker ARX 300 spectrometer (21.7 MHz) in NMR tubes with 5 mm diameter and refer to nitromethane (δ_N 0.0) as external standard. For the determination of half-height linewidths $\Delta v_{1/2}$, the spectra were processed with the deconvolution routine (Lorentzian-type curve fitting) of the program WIN-NMR by Bruker.

Chemicals. Vilsmeier salts 1-AlCl₄³⁹ and 1-SbCl₆⁴⁰ were prepared from commercially available 1-Cl (Fluka) as reported in the literature. The benzylideneammonium salts 2a-Cl, 2a-Br, 2a-AlCl₄, 2a-SbCl₆, and 2b-Cl were synthesized according to Risch's method^{41,42} from the corresponding aminals. The preparation of 2a-I was described by Böhme;⁴³ that of 2a-BF₄ by Leonard.⁴⁴ In analogy to known procedures^{45–47} diethylmethyleneammonium chloride (3-Cl), bromide (3-Br), and iodide (3-I) were obtained from reactions of diethyl-(methoxymethyl)amine⁴⁵ with chlorotrimethylsilane (Merck-Schucha-

(39) Bosshard, H. H.; Zollinger, H. Helv. Chim. Acta 1959, 42, 1659–1671.

(40) Arnold, Z.; Holý, A. Collect. Czech. Chem. Commun. 1962, 27, 2886–2897.

(41) Risch, N.; Arend, M. In *Methods of Organic Chemistry (Houben-Weyl)*, 4th ed.; Helmchen, G., Hoffmann, R. W., Mulzer, J., Schaumann, E., Eds.; Thieme Verlag: Stuttgart, 1995; Vol. E21b, pp 1925–1929.

(42) Betschart, B.; Schmidt, B.; Seebach, D. *Helv. Chim. Acta* **1988**, 71, 1999–2021.

(43) Böhme, H.; Hartke, K. Chem. Ber. 1960, 93, 1305–1309.

(44) Keenan, T. R.; Leonard, N. J. J. Am. Chem. Soc. 1971, 93, 6567-6574.

(45) Rochin, C.; Babot, O.; Dunoguès, J.; Duboudin, F. Synthesis 1986, 228–229.

rdt), bromotrimethylsilane (Aldrich), and iodotrimethylsilane (Merck-Schuchardt), respectively, in dichloromethane. Starting from 4-Cl (Merck-Schuchardt), the procedure of Knoll and Krumm²⁰ was employed to yield 4-AlCl₄ and 4-SbCl₆.

Iminium Triflates. The compounds 1-OTf, 2a-OTf,⁹ 2b-OTf, 3-OTf, and 4-OTf were generated under argon atmosphere in rubberseptum-equipped NMR tubes by addition of 1.5 equiv of trimethylsilyl triflate (Fluka) to a solution of the corresponding iminium chloride in the deuterated solvent.⁴⁸

General Procedure for the Generation of Dialkylmethyleneammonium Hexachloroantimonates. One equivalent of chlorotrimethylsilane was added to a stirred solution of the corresponding (alkoxymethyl)dialkylamine⁴⁵ in dichloromethane (1–5 mL/mmol). After 30 min the colorless solution was cooled with an ice bath. Careful addition of 1 equiv of antimony(V) chloride (Merck-Schuchardt) was followed by another 15 min of stirring without cooling. The iminium hexachloroantimonates precipitated from the solutions, were isolated by filtration with suction, washed twice with a dichloromethane/diethyl ether mixture (1/1, v/v), dried in vacuo, and stored under argon. The thus obtained salts were analytically pure without further purification. For spectroscopic data (¹H, ¹³C, and ¹⁴N NMR, IR) and results of elemental analyses, see the Supporting Information.

Acknowledgment. We thank the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie for financial support of this work. A generous gift of iminium salts by Prof. N. Risch (Paderborn) is gratefully acknowledged. Thanks go to Dr. S. Braun and K. O. Runzheimer (Darmstadt) for performing the major part of the NMR measurements. Dedicated to Professor Klaus Hafner on the occasion of his 70th birthday.

Supporting Information Available: Elemental analyses and NMR and IR data of iminium hexachloroantimonates, results of nitrogen-14 NMR measurements, and details concerning the quantum chemical calculations (GAUSSIAN 94 Archive Entries) (5 pages). See any current masthead page for ordering and Internet access instructions.

JA972860U

(48) Reissig, H.-U.; Lorey, H. Liebigs Ann. Chem. 1986, 1914-1923.

^{(46) (}a) Kozyukov, V. P.; Kozyukov, Vik., P.; Mironov, V. P. J. Gen. Chem. USSR (Engl. Transl.) **1983**, 53, 100–106; Zh. Obshch. Khim. **1983**, 53, 119–126. (b) Heaney, H.; Papageorgiou, G.; Wilkins, R. F. J. Chem. Soc., Chem. Commun. **1988**, 1161–1163. (c) Hombrecher, H. K.; Horter, G. Liebies Ann. Chem. **1991**, 219–227.

⁽⁴⁷⁾ Meyers, A. I.; Miller, D. B.; White, F. H. J. Am. Chem. Soc. 1988, 110, 4778-4787.